CONTENTS

Preface to the English-language Edition / ix

Translator's Introduction:
Alain Badiou: Back to the Mathematical Line / 1

Prologue: God is Dead / 21

1. The Question of Being Today / 33

2. Mathematics is a Thought / 45

3. The Event as Trans-Being / 59

4. Deleuze's Vitalist Ontology / 63

5. Spinoza's Closed Ontology / 73

6. Platonism and Mathematical Ontology / 89

7. The Aristotelian Orientation and Logic / 101

8. Logic, Philosophy, "Linguistic Turn" / 107

9. First Remarks on the Concept of Topos / 115

10. First Provisional Theses on Logic / 119

11. The Being of Number / 125

12. Kant's Subtractive Ontology / 133

vii
Contents

13. Group, Category, Subject / 143
14. Being and Appearing / 153
Annex / 169
Notes / 171
Contributors / 183
Index / 185
In 1986, upon completing the most important philosophy book I had yet written (L'Étre et l'événement), I felt myself filled with new resources. Thanks to the main concepts I had created, or re-created (situation, event, Subject, truth procedure, forcing, and so on), I felt myself able to produce a new vision on all kinds of things: poems (Mallarmé or Rimbaud), prosaists (Beckett), political sequences (Saint-Just, Lenin, and Mao), psychoanalytic sequences (Lacan), and mathematical novelties (on the concept of number).... In the few odd years between 1986 and 1992, I multiplied lectures, articles, and sundry public appearances. I was living in thought like someone who had fallen upon an oil well: an inexhaustible intellectual energy lay at my disposal. This fertile good fortune was recapitulated in the anthology called Conditions, published in France in 1992. I had gained very clear insight into what (for me) philosophy was all about. So much so that, as of 1989, I was able to confine my main convictions densely, but in organized fashion, to a short work that made them accessible to a broader public. This was Manifeste pour la philosophie. From these convictions I was also able to draw implacable consequences about action and its norms. This book was L'Éthique, Essai sur la conscience de Mal. It ended up being quite a best seller in France, and made its way around the planet. So far, it has been translated into sixteen languages.

Yet from the middle of the 1990s, what slowly grew to become most evident to me were the difficulties of my undertaking. Happy times were coming to a close. I told myself: "The idea of event is fundamental. But the theory I propose on what the event is
the name of is not clear.” Or: “The ontological extension of mathematics is certain. But, then, what about logic?” Many other doubts and questions ensued. For example: “How to distinguish an event from an important fact or from a becoming, in Deleuze’s sense?” Or: “Do we not have to conceive, if we are materialists, any Subject as having a body? What would that body be, provided it is not the biological body, if not a kind of body of truths?” More difficult still, although more empirical in appearance: “How does one account for the following obvious fact: just as new things can be progressive, so also can they be reactionary. How can it be that something new and novel can also be reactive?” To sharpen my thoughts, I started up a dialogue with thinkers from whom I felt very far in spirit, namely, Nietzsche and Wittgenstein. Then I turned to my great living elder, Gilles Deleuze. We discussed, and that discussion, through various episodes, let to the book Deleuze, Le clameur de l'être, published in France in 1997. It, in turn, became an international best seller. I also returned to a source that was both heterogeneous and very powerful in my view: The apostle Paul. When I organized the results of my reading into book form as Saint Paul, ou la foundation de l’universalisme, it became the third best seller.

All in all, in those years I was leaping from best seller to best seller! Yet the questions I had addressed in L’Être et l’événement still lay without a real answer. They kept besetting me as I busied myself at the same time with all kinds of things outside of pure philosophy. From 1993 to 1998, I was constantly doing theater. I wrote a four-play cycle on the Ahmed character and had it staged. That was also the time during which I was writing my novel, Calme bloc ici-bas. As anyone will tell you, the prose of novel writing is demanding; it requires very intense concentration. Meanwhile, I had compiled a substantial body of research and information on the most up-to-date mathematics. I had to come to terms with Set Theory’s rival theory regarding mathematical foundations: category theory. There were sizeable stakes involved as I had granted Set Theory a key ontological role. I could not exempt myself from proposing a philosophical interpretation of its rival from within my system. Let us add that, as of 1996, I got quite involved in collective action and the thought of that action by organizing a political battle in favor of the “sans papiers” workers who lack authorization to
work in France. We strove for them to be fully recognized as labor­
ers living and working in France, and have them obtain the rights
entailed by such recognition.

With philosophy, I was going through a middle period. The
book you are about to read doubtless bears the difficulties, but also
the charm, of this kind of period. Everything in the book is in
progress. Nothing is quite concluded. Besides, the title "transitory
ontology" states this intervallic dimension pretty clearly: on the
road with no set destination.

I kept lecturing, penning articles, and exploring every avenue
that could be drawn from my philosophical intuitions. I even con­
sidered publishing an anthology called Conditions 2. But I soon
realized that my intellectual situation was very different from what
had led to Conditions in 1992. At the end of the 1980s, I had taken
on certainties. I was experiencing a spirit of conquest. Six or seven
years later, I lay amidst questions and doubts, and hard explora­
tions. As it turned out, I was on the road leading me to the book I
am finishing. Its title is Logiques des mondes (World Logics), sub­
titled L’Être et l’événement 2. Its publication in France is planned
for 2006. I believe this Short Treatise bears excellent witness to
how victory had shifted into doubt and to an obligation, fostered by
that doubt, of having to invent other concepts.

Let us note that Briefings on Existence, Short Treatise on Tran­
sitory Ontology is part of a trilogy, which is already more tentative
than the unity of the Conditions volume. Published simultaneou­sly
with it was the Petit manuel d’inesthétique, whose English-language
translation has just been published. There was also the Abrégé de
métapolitique, which should be published in English shortly. Brief­
ings on Existence represents the most philosophical moment of that
trilogy. I believe it combines the following four principles:

1. Several tightly knit exercises from the history of philoso­
phy (or more accurately, from the history of the thought on
Being) devoted to Plato, Aristotle, Spinoza, Kant, Heidegger
and Deleuze . . . ;

2. Propositions characteristic of our era, like: the real sense
of the statement "God is dead," or the end of the "lin­
guistic turn";
3. A detailed examination of philosophy’s relationship to mathematics and formalized logic;

4. A new doctrine of the distinction between “Being” and “appearing” clearly heralding the most important themes of Logiques des mondes.

Winding through these elements, I believe, is a red thread. It is the thread of necessity, for which I had somewhat blindly been seeking. I mean the thread that would allow me to keep the trans-temporal ontological intuitions of L’Être et l’événement as well as build a complete theory of what appears to us as our world here and now.

My first “big” book asked the question: what about Being, what about truths, and what about the being of truths? In substance, it answered: truths are generic manifolds.

My second “big” book, forthcoming, will ask: what about the world, what about the truth-subjects, and how can these subjects live in a world? You will have to wait until next year to find out the answer it has received.

The Court traite d’ontologie transitoire, proposed here to you in English translation as Briefings on Existence. Short Treatise on Transitory Ontology by the diligent and friendly care of Norman Madarasz (who also translated and edited Manifesto for Philosophy, published by SUNY Press in the “Intersection” series in 1999), bears witness to my efforts of shifting from one book to the next.

This small book is the valorous passage between the big.

Alain Badiou

Notes

1. For all bibliographical references regarding English-language translations of Badiou’s work, please see the Translator’s Introduction and Notes.
TRANSLATOR'S INTRODUCTION

Alain Badiou:
Back to the Mathematical Line

Norman Madarasz

Nowhere does an author lose control over his text more than in translation. Michel Foucault famously argued that a text buries its author alive by branching out into an uncontrollable array of meaning patterns and interpretations. In translation, however, an author parts with the linear shaping of his oeuvre—all other things being equal.

This has little to do with a sentence, argument, theory, or book falling short of possessing the linguistic tools required to bring a conceptual apparatus into full being in another language and another world. I do not refer here to Heidegger or Ortega y Gasset's infamous declarations on the shortcomings of translating. Instead, it has just about everything to do with the very sequence in which works are translated, which is only compounded when an author writes along several different lines simultaneously.

Alain Badiou has been recognized in France as a leading thinker since the 1960s. Amidst the struggles of the 1970s Badiou's political commitment and continued devotion to egalitarian processes and democratic demands drove him into conflict not merely with the French establishment, but also with the Parisian philosophical milieu. The circumstances around this global conflict resulted in the halt of a short, impressive sequence of publications on mathematical
MATHEMATICS IS A THOUGHT

There is nothing quite obvious about this statement. It has been asserted time and time again. First by Plato, who appended it with all kinds of reserves. It has also been negated time and time again: especially by Wittgenstein. The statement surely evades any attempts at proving its validity. Perhaps is it the dead end of mathematics itself, and therefore the Real of mathematics. But the Real is declared, instead of known.

The statement's obscurity is the outcome of what an "intentional" conception of thought seems to impose upon itself. According to this conception, all thought is the thought of an object that determines its essence and style. The intentional stance then goes on to posit mathematics as a thought exactly insofar as mathematical objects exist and philosophical investigation focuses on the nature and origin of these objects. Clearly, this type of presupposition is a problematic one. In what sense can mathematical idealities be declared to exist? And how can they exist in the generic form of object? Aristotle tackles this difficult problem throughout Book M of the *Metaphysics*, which he names the *mathematika*, that is, the mathematical things or presupposed correlates of mathematical science. In my opinion, Aristotle's solution is definitive in as much as the question of mathematics as a thought is dealt with from the angle of object or objectivity. His solution is inscribed between two limits.

1. On the one hand, being or existence can in no way be granted to mathematical objects in the sense that having this "being" is separate and comprises a preexisting and autonomous domain of objective donation. What Aristotle criticized here is a thesis usually attributed to Plato. It is a
fact that Aristotle’s real descendants, namely, modern Anglo-American empiricists, call “Platonism” the supposed separate and supersensible existence of mathematical idealities. Counter to this supposition, they stress that mathematical objects are *constructed*. Aristotle would really be saying: the *mathematika* are in no way separate beings. Otherwise, there would be an original intelligible intuition of them to which nothing attests. They cannot be used to identify mathematics as a singular thought. For Aristotle, then, no ontological separation can guarantee epistemological separation, especially when related to the gap between physics, with its focus on the sensible, and mathematics, since: “it is manifestly impossible for mathematical things to have a separate existence from sensible beings.”

2. Symmetrically, it is just as impossible for mathematical objects to be immanent to the sensible. Aristotle deals with this point in Book B. The main argument is that the immanence of indivisible idealities to sensible bodies would entail the indivisibility of bodies. Or, that the immanence of immobile idealities would entail the immobility of sensible bodies, which is obviously refuted by experience. The incontestable core of this thesis is that all immanent mathematicality either infects the mathematical object with sensible predicates that are manifestly foreign to it, as with temporality or corruptibility; or it infects sensible bodies with intelligible predicates that are just as foreign to them, as with eternity or conceptual transparency.

With respect to experience, the mathematical object is neither separate nor inseparable. It is neither transcendent nor immanent. The truth is that strictly speaking it has no being. Or more precisely, the mathematical object exists nowhere as an act. As Aristotle would say, either the *mathematika* absolutely do not exist, or at any rate they do not exist absolutely. Mathematical objectivity can be deemed a pseudo-being, suspended between a pure separate act, whose supreme name is God, and sensible substances, or actually existing things. Mathematics is neither physics nor metaphysics.

But then what is it exactly? In fact, mathematics is a fictive activation (*activation fictive*), in which existence in act is lacking.
Mathematical objectivity exists potentially in the sensible. It re­
mains there in the definitive latency of its act. As such, it is true that
a person potentially grasps the arithmetic “One,” or that a body
potentially grasps one pure form or another. This is not to say that
the arithmetic-One or the geometric sphere exists on their own, nor
that they exist as such in a person or on a planet. The fact is thought
can activate the One or the sphere from the experience of an organ­
ism or object. What does “activate” mean? Precisely this: to treat an
existent as if it were an act when it only exists potentially. It means
treating a being as a pseudo-being or taking something as separate
that is not. This is Aristotle’s own definition: the arithmetician and
geometer obtain excellent results “by taking as separate what is
not separate.”

The consequence of this fiction is that the norm of mathemat­
ics cannot be the true. The true is not accessible by a fiction. The
norm of mathematics is the beautiful. For what ‘fictively’ separates
the mathematician is above all relations of order, symmetries and
transparent conceptual simplicities. Admittedly, Aristotle observes
that “the highest forms of the beautiful are order, symmetry and the
definite.” The upshot is that “the beautiful is the main object of
mathematical proofs.”

Aristotle’s definitive conclusion can be modernized. To this
end, it suffices to ask oneself: what has the power to activate “po­
tential being”? Or, what has the power to separate the inseparable?
For moderns like us, it should be obvious that the answer to these
questions is language itself. As Mallarmé once remarked in a fine
citation, if I say “a flower,” I separate it from every bouquet. If I say
“let a sphere,” I separate it from every spherical object. At that
point, matheme and poem are indiscernible.

We can recap this doctrine as follows:

1. Mathematics is a pseudo-being’s quasi-thought.

2. This pseudo-being is distributed in quasi-objects (for ex­
ample, numbers and figures, as well as algebraic and topo­
logical structures, etc.)

3. These quasi-objects are not endowed with any kind of ex­
istence in act, as they are neither transcendent to the sen­sible nor immanent to it.
4. They are in fact linguistic creations fictively extracted from the latent or inactionable, or non-separable strata of real objects.

5. The norm managing the fiction of separation is the transparent beauty of the simple relations it constructs.

6. Mathematics is thus ultimately a rigorous esthetics. It tells us nothing of real-being, but it forges a fiction of intelligible consistency from the standpoint of the latter, whose rules are explicit.

And finally:

7. Taken as a thought, mathematics is not the thought of its own thought. Indeed, as set in its fiction, it can only believe in its thought. This is a point on which Lacan rightly insisted: the mathematician is first and foremost someone who believes in mathematics "hard as rock." The mathematician’s spontaneous philosophy is Platonism because, as its act separates the inseparable, it draws the ideal spectacle of its result from this fictive activation. It is as though mathematical objects existed as acts. More profoundly, mathematical thought, as with any fiction, is an act. It can only be an act because there is nothing to contemplate within it. As Aristotle says in a very tight formula: with mathematics, (ενοέσις ενεργεια), the intellect is in act. In mathematics, the act lacking in objects ends up returning on the Subject’s side.

Caught in the act of fictive activation, which is none other than her own thought, a mathematician fails to recognize its structure. This is also why the esthetic dimension is dissimulated under a cognitive claim. The beautiful is the real cause of mathematical activity. But in mathematical discourse this cause is an absent one. It can only be spotted by its effect: "It is not grounds enough to claim that just because the mathematical sciences do not name the beautiful that they are not in fact dealing with it. For they show its effects and relations." This is why it is up to the philosopher to name the real cause of the mathematical act. It is up to the philosopher to think mathematical thought according to its real destination.
In my view, the aforementioned conception of mathematics is still dominant today. It appears in four major symptoms:

(a) The critique of what is presupposed under the name of "Platonism" is more or less a consensus in all contemporary conceptions of mathematics. For much the same reason one can spot mathematicians who are spontaneous Platonists, or "naïve" ones.

(b) The constructive and linguistic character of mathematical entities or structures is almost universally accepted.

(c) Even if aesthetics is not summoned per se, many current themes are homogenous to it. As such, the absence of the category of truth; the tendency to relativism (there would be several different mathematics, and eventually it comes down to a matter of taste); last, the logical approach of mathematical architectures, which treats them as large forms whose construction protocol would be decisive and whose reference or very being is the determination in thought of what is thought and remains inassimilable. We are in line with Aristotle's orientation here. He explicitly recognizes a formal superiority to mathematics, which he calls a logical precedence, but he does so to better deny its substance or ontological precedence. As he says: "Substantial precedence is the sharing of beings who, insofar as separate, prevail through the faculty of separate existence." The purely fictive separation of the mathematical object is thus, in terms of ontological dignity, inferior to the real separation of things. By contrast, the logical transparency of mathematics is esthetically superior to the separate substantiability of things. This is entirely reproduced today in the canonical intralinguistic distinction between the formal and empirical sciences.

(d) Nowadays, there is an incontestable supremacy of the constructivist, indeed intuitionistic vision, over the formal and unified vision of the ground, as well as on the self-evidence of classical logic. The great edifice undertaken by Nicolas Bourbaki was built according to a global esthetic that could be called "arborescent." On the solid trunk of
logic and a homogenous theory of sets, symmetrical branches of algebra and topology grew. They would end up crossing again in the higher reaches with the finest "concrete" structures, which in turn comprised a ramified lay out of foliage. Nowadays, one leaves off from already complex concretions instead. It is about folding and unfolding them according to their singularity, and of finding the principle of their deconstruction-reconstruction, without being concerned with an overall blueprint or with a pre-decided fundament. Axiomatics has been left behind to the benefit of a mobile grasping of complexities and surprising correlations. Deleuze's rhizomatics prevails over Descartes' tree. The heterogeneous lends itself to thought more than the homogenous. An intuitionistic or modal logic is more appropriate to this descriptive orientation than is the stiffness of the classical logic whereby the middle is excluded.

So the question is the following. Regarding mathematics as thought, are we fated to a linguistic version of Aristotelianism?

This is not my conviction. The injunction of contemporary mathematics seems to me to uphold Platonism. It strives to understand its real force, which has been completely ensconced by Aristotle's exegesis.

However, at this point, I shall not immediately embark upon what could be called a Platonist rectification. The question I should like to deal with and outline is more limited. Since it is all about ultimately getting to the thought of the thought of mathematics as a thought, it is relevant to point out the moments in which mathematics has apparently been convened to think itself, that is, to say what it is. As we know, these moments are conventionally termed "crises" or "foundation crises."

Such was the crisis of irrational numbers in so-called Pythagorean mathematics. Or the crisis linked to the "paradoxes" of Set Theory at the end of the nineteenth century, and the various limitation theorems in the formalism of the 1930s. There was also crisis with the anarchic handling of the infinitely small at the beginning of the eighteenth century, as well as crisis dealing with geometry upon the discovery of the undecidable nature of Euclid's postulate on parallel lines.
At the time, the question was often raised as to whether these crises were internal to mathematics or strictly philosophical. Imported into the debate among mathematicians were thought options linked to the existence of what Louis Althusser once called "the spontaneous philosophy of the scientists." Althusser argued that there was no kind of crisis in the sciences. There were certainly discontinuities leading to hasty qualitative reshuffling, which did constitute moments of progress and creation. But in no way were they about dead-ends or crises. As these ruptures emerged, struggles in philosophical tendencies would ineluctably break out, affecting the respective scientific fields. The stakes in such struggles involved resetting the way philosophical currents help themselves to the sciences for their own ends and purposes. In the final analysis, the nature of these struggles is political.

Let us leave off from the following observation. There are singular moments when mathematics seems to be called upon, for its own purposes, to think its thought. What does this operation consist in? Everything is played out in a few statements that are the sticking points of mathematical thought, as if they were the signature of the impossible within its own field.

These statements come in three types:

One kind of statement can be a formal contradiction, drawn deductively from a set of presuppositions whose evidence and cohesion, however, appear to lie beyond doubt. Paradox is its sticking point. This is what happened to formal class theory in Frege's style, which stumbled on Bertrand Russell's paradox. The evidence held to be impossible here is of the kind that assigns to any property the set of terms possessing that property. There is nothing clearer than Frege's doctrine of the extension of a concept. Still, cases do tend to arise which are played out as real trials, affecting self-evidence with intrinsic inconsistency.

The second kind involves statements in which an established theory is diagonally crossed at one point by an exception or excess. Cases such as these compel a theory that had once been conceived as general to prove to be only local, indeed completely particular or "special" (restreinte). This is what happened to the demonstration stipulating that the diagonal of a square is incommensurable with its side, provided that "measurement" be understood to mean a rational number. The self-evidence of this assignation to all graspable
relations of a pair of natural numbers once ensured the reciprocity between Being and Number for Pythagoreans. It was ruined demonstratively by a geometric relation exceeding any pair of natural numbers that could be assigned to it as a yardstick. Therefore the thought according to which Being’s essential numericity obtains ought to be thought over again. This entails that mathematical thought as such ought to be thought over again.

Finally, the third case is when a previously unperceived statement is isolated as the very condition of results held to be certain, but when considered alone this statement seems unacceptable with respect to the shared norms of the constructions of mathematical thought. This was the case with the axiom of choice. The great late-nineteenth century French algebraists used to make implicit use of the axiom in their own demonstrations. But formally explicating the axiom appeared to totally exceed what they had accepted with respect to handling the infinite. They saw the axiom especially as illegitimately transgressing the constructive vision to which they subjected the operations of mathematical thought. The axiom of choice actually amounts to admitting an absolutely indeterminate infinite set whose existence is asserted albeit remaining linguistically indefinable. On the other hand, as a process, it is unconstructible.

It can be argued that mathematical thought returns unto itself under the constraint of a real sticking point or the inevitable emergence of an impossible point within its own field. This sticking point can be either of a paradoxical nature bringing about inconsistency, of a diagonal nature triggering excess, or of the nature of something disclosing a latent statement that brings forth the indefinite and unconstructible.

What then is the nature of mathematics as it twists unto itself beneath the injunction of an intrinsic sticking point? What surfaces concerns everything pertaining to an act or to decision making within the scope of mathematical thought. By the same token, a position has to be taken. For we stand actually as an act (au pied de l’acte), if I dare say, upon the very norm of the decision the act accomplishes.

At any rate, what is referred to in this obligation to decide is Being. Or it is about the mode according to which mathematics assumes what Parmenides himself said: “The Same is both thought and Being.”
Let us return to our examples again. For the Greeks, beneath the injunction of real incommensurability, thought was compelled to decide upon another way of knotting together Being and number, and the geometric and arithmetic. The name evoking this decision is Eudoxus. As for Russell's paradox, one had to accept a restriction on the powers of language to determine the pure multiple. The name evoking that decision is Ernst Zermelo. With the axiom of choice, thought was summoned to abruptly decide upon the indeterminate actual infinite—a decision that has divided mathematicians ever since.

In each case, it was about deciding on how, and according to what limits of an immanent disposition, mathematical thought is coextensive with Being. It had to do with how Being sustains the consistency of mathematical thought.

Therefore, when abutting against paradox and inconsistency, the diagonal and excess, or an indefinite condition, mathematics can be said to end up thinking that which, in its thought, relates to an ontological decision. What we are dealing with strictly speaking is an act. It is an act durably engaging the real of Being. The decision regarding the latter takes on the task of ascertaining its connections and configurations. Yet confronted in this way to its decisional dimension, mathematics can only become prey to the question of its norm. More accurately, it is prey to the question of the norm of what thought is able to sustain as an assertion of existence. Do we have to confer existence on numbers whose principle is to no longer consist of units? Must existence be conferred to nondenumerable actual infinite sets? What conditions can ensure a well-formed concept to accept an identifiable extension? How are the assertion of existence and the construction protocol linked? Can the existence of intelligible configurations be granted despite the impossibility of displaying even a single case of them? These questions will be settled according to an immanent norm that does not constitute thought, but orients it.

I call an orientation in thought that which regulates the assertions of existence in this thought. An orientation in thought is either what formally authorizes the inscription of an existential quantifier at the head of a formula, which lays out the properties a region of Being is assumed to have. Or it is what ontologically sets up the universe of the pure presentation of the thinkable.
An orientation in thought extends not only to foundational assertions or axioms, but also to proof protocols once the stakes are existential. Are we willing to grant, for example, that existence can be asserted based on the sole hypothesis that inexistence leads to a logical dead end? This is the spirit of indirect proofs, or reasoning *ad absurdum*. Granting its use pertains typically to the classical orientation in thought; not doing so pertains to the intuitionistic one. The decision has to do with what thought determines in and of itself as an access to what it declares as existing. The way towards existence sets up the discursive route to take.

To my mind, it is wrong to say that two different orientations prescribe two different mathematics, or two different thoughts. It is within a single thought that the orientations clash. Not one classical mathematician has ever cast doubt upon the recognizable mathematicity of intuitionistic mathematics. In either case, it is a question of a deep-rooted identity between thought and Being. But *existence*, which is both what thought declares and whose consistency is guaranteed by Being, is grasped according to different orientations. The fact is existence can be called that in respect of which decision and encounter, and act and discovery are indiscernible. Orientations in thought quite peculiarly take aim at the conditions of this indiscernibility.

It can thus be said that there are moments when mathematics, abutting on a statement that attests in a point of the impossible to come, turns against the decisions by which it is orientated. It then seizes upon its own thought, doing so no longer according to its demonstrative unity, but according to the immanent diversity of orientations in thought. Mathematics thinks its unity as exposed from within to the multiplicity of thought orientations. A "crisis" in mathematics arises when it is compelled to think its thought as the immanent multiplicity of its own unity.

I believe that it is at this point, and only at this point, that mathematics—that is, ontology—functions as a condition of philosophy. Let us put it this way: mathematics relates to its own thought according to its orientation. It is up to philosophy to pursue this gesture by way of a general theory of orientations in thought. That all thought can only think its unity by exposure to the multiplicity orientating it is a notion mathematics cannot accomplish alone, albeit this is what it manifests most exemplarily. The com-
Mathematics is a Thought

plete relation of mathematical thought to its own thought assumes that philosophy, under the condition of mathematics, deal with the question: what is an orientation in thought? What is it that imposes the identity of Being and thought to be carried out according to an immanent multiplicity of orientations? Why must one always decide upon what exists? The whole point is that existence is in no way an initial donation. Existence is precisely Being itself in as much as thought decides it. And that decision orients thought essentially.

One ought to have a theory of thought orientations at one's disposal, and use it as the real territory of what can activate the thought of mathematics as a thought. For my own purposes, I recommended a summary dealing of this point in L'Être et l'événement, though I cannot return to its technical substructure. Let it suffice for our purposes here to recall how three major orientations were put forward in that book. They can simultaneously be identified in moments of mathematical crisis and just as well in times of conceptual reshuffling within philosophy itself. These orientations are the “constructivist,” transcendent and generic orientations.

The first sets forth the norm of existence by means of explicit constructions. It ends up subordinating existential judgment to finite and controllable linguistic protocols. Let us say any kind of existence is underpinned by an algorithm allowing a case that it is the matter of to be effectively reached.

The second or transcendent orientation works as a norm for existence by allowing what we shall coin a “super-existence.” This point has at its disposal a kind of hierarchical sealing off from its own end, as it were, that is, of the universe of everything that exists. This time around, let us say every existence is furrowed in a totality that assigns it to a place.

The third orientation posits existence as having no norms, save for discursive consistency. It lends privilege to indefinite zones, multiples subtracted from any predicative gathering of thoughts, points of excess and subtractive donations. Say all existence is caught in a wandering that works diagonally against the diverse assemblages expected to surprise it.

It is quite clear that these orientations are—metaphorically—of a political nature. Positing that existence must show itself according to a constructive algorithm, that it is predisposed in a Whole, or that it is a diagonal singularity; all of these orient thought according to a
repeatedly particular meaning of what is. And consideration of the 'what is' is here based on the decision to attribute existence. Either 'what is' is that of which there is a case, or 'what is' is a place in a Whole; or 'what is' is what is subtracted from what is a Whole. As for the claim I made above, we could transpose what I am speaking of in terms of a politics of empirical particularities, a politics of transcendent totalities and a politics of subtracted singularities, respectively. In a nutshell, they are embodied, respectively, as parliamentary democracies, Stalin, and as something groping forward to declare itself, namely, generic politics. The latter suggests a politics of existence subtracted from the State, or of what exists only insofar as it is incalculable.

What is otherwise wonderful is how these three orientations can be read mathematically by sticking to Set Theory. Gödel's doctrine of constructible sets gives a solid base to the first orientation; the theory of large cardinals provides one for the second orientation; and the theory of generic sets lends itself to the third.

Still, many other more recent examples show how every mathematical breakthrough ends up exposing these three orientations in the contingent unity of its movement. Every real movement is forthwith the presentation of the three orientations to the point of convening thought to it. Every real movement confronts the formal triplicity of these decisions regarding existence.

What we must bear in mind about this latter point, which is of great help in any concrete situation, can be summed up as follows. No serious quarrel between thought-apparatuses manages to oppose the interpretations of a kind of existence everyone recognizes. In fact, the opposite is closer to the truth. It is about existence itself that agreement fails to occur, as this is what had been decided upon in the first place. Every thought is polemical. It is no mere matter of conflicting interpretations. It is about conflicts in existential judgments. This is why no real conflict in thought reaches a full resolution. Consensus is the enemy of thought, for it claims we share existence. In the most intimate dimension of thought, however, existence is precisely what is not shared.

Mathematics has the virtue of not presenting any interpretations. The Real does not show itself through mathematics as if upon a relief of disparate interpretations. In mathematics, the Real is shown to be deprived of sense. It follows that when mathematics